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Lecture 5

Structure Functions at Low Q2

and

the CQ Picture
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• extension of the two-stage model at low Q2

as Q2 decreases below                            we expect that: 

† 

ª Lc
2 @1GeV 2

1) the inelastic coupling of CQ’s with g* becomes less and less important;
2) the elastic coupling of CQ’s with g* becomes more and more important.
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• CQ structure function:

naïve expectation !
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• CQ’s as intermediate structures between current quarks and hadrons Æ two-stage model

O.K. with DIS data

[Petronzio et al. (‘03)]
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• elastic channel at CQ level:
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t = Q2 4m j
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•   DIS regime:

•   0.1 ÷ 0.2 < Q2 (GeV2) < 1 ÷ 2: 

† 

ª LQCD
2

† 

ª Lc
2

it cannot hold at each x value !
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• Cornwall-Norton moments:

† 

M n
H Q2( ) = dx
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• dual moments:
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CQ-hadron duality:

† 
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dual Q2( ) for low values of n, but n > 2

• squared CQ form factor:
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SU(2) symmetric form factors:
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• define:

† 

Rn
H Q2( ) ≡ M n

H Q2( ) M n
H

CQ picture              CQ-hadron duality

† 

Rn
H Q2( ) ª F Q2( )[ ]

2

scaling property: the ratio becomes independent on n

scaling function: the squared CQ form factor (independent also on H)

Note: once the CQ form factor is extracted from known data on the hadron H, using a

reasonable model for                one can predict the low-order moments of another hadon H’

† 

f j
¢ H z( )
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• CLAS data: map of F2 of the proton for W < 2.5 GeV and Q2 < 4.5 GeV2     [M. Osipenko et al. (‘03)]

kinematical coverage

shaded area: CLAS kinematics

points: previous world data
            for Q2 < 5 (GeV/c)2
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Q2 = 0.775 (GeV/c)2

CLAS

previous
exp.’s

param. from
Ricco et al. (‘99)

hatched area:
systematic errors
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† 
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• no target-mass effects on 

† 

M n
p Q2( )

 • Nachtmann moments of the structure function

• Nachtmann variable:

† 

M n
p Q 2( ) Q2>>M 2æ Æ æ æ æ dx x n-2F2

p x,Q 2( )
0

1
Ú

† 

M n
p Q 2( ) = leading twist + dynamical higher twists

parton correlations
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- sharp rise at low Q2,
   smoother behavior for
   Q2 > 1 GeV2

- strong dependence on n:
   ~ one order of magnitude
   moving from n to n+2

CLAS data + world data construction of experimental (> 90%) Nacthmann moments

 [M. Osipenko et al. (‘03)]
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• assume that CQ’s share exactly (1/3) of the LF proton momentum:

factor (1/9) between
orders n and (n+2)

- spread of values reduced

- tendency toward a scaling 
   property
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• consider the relative motion of CQ’s inside the proton

† 

f p x( ) = ej
2 f j
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Â =
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LF proton wave function

- normalizations:
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• SU(6) symmetric wave function:
  

† 

f p x( ) = d
r 
k ̂ dr p ̂Ú dxi[ ]Ú d x -x1( ) E1E2E3
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2
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r 
k 
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r p 

important effect of the
internal motion, depending
on the ratio b / mQ

c. of m.
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quark potential models SU(6) symmetry breaking

One-Gluon-Exchange model
[N. Isgur et al. (‘86)] 

Goldstone-Boson-Exchange model
[L. Glozman et al. (‘98)]

the gaussian ansatz is a
good first approximation
with appropriate values of
the ratio  b/mQ
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b= 0.3 GeV

mQ = 0.25 GeV

an improvement,
but still unsatisfactory

gaussian ansätz

d(x-1/3)
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† 

M n
H = dx

0

1
Ú xn-1 ej

2

j
Â f j

H x( )• the main drawback is that the equation                                                    has a meaning
   only in the Bjorken limit

• we have to account for power corrections:

1) inelastic pion threshold (final-state phase-space constraints):

2)  kinematical power corrections due to the target mass M ~ 1 GeV

3) dynamical power corrections due to final-state interactions (responsible for resonances)

† 

xmax = xp ≡
Q2

Q2 + M + mp( )2 - M 2
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a small improvement† 

Fthr W( ) = 1-
M + mp( )2

W2

• with threshold factor:

† 

f p x( ) æ Æ æ f p x( ) Fthr W( )
b= 0.3 GeV

mQ = 0.25 GeV

† 

Fthr W( ) = 1
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in analogy with the DIS case we replace              with                      , given by 

• target-mass corrections:

† 

f p x( )

† 

f TM
p x,Q2( )

† 

f TM
p x,Q2( ) =

x2

r3
f p x( )

x2 +
6M 2

Q2
x3

r4 d ¢ x 
x

xmax
Ú

f p ¢ x ( )
x ¢ x 

+
12M 4

Q4
x4

r5 d ¢ x 
x

xmax
Ú

f p ¢ x ( )
x ¢ x 

¢ x -x( )

x = Nachtmann variable,
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b= 0.3 GeV

mQ = 0.25 GeV

scaling between
~ 0.2 and ~ 2 GeV2

for n > 2

† 

F Q2( )[ ]
2

=
1

1+ rQ
2 Q2 6
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Î 
Í 
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˘ 

˚ 
˙ 
˙ 

2

rQ = 0.21 fm

• with threshold factor and kinematical (target-mass) corrections
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what is included in the model and what is not ?

• consider the OPE at the fundamental level (current quarks and gluons of QCD):

- higher twists (HT) are matrix elements of local operators acting on elementary (point-like) fields

- series of matrix elements of operators On producing terms of the form 

† 

Ln
2

Q2

Ê 

Ë 
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¯ 
˜ 

tn -2( ) 2

Ln = scale proportional to the inverse of Rn twist of the
operator OnRn= average distance of partonic correlations generated by On

a) correlations amog partons in the same CQ: Rn < rQ

b) correlations among partons belonging to different CQ’s: Rn ~ 1 / LQCD ~ conf. size > rQ

• short-range HT (a) are accounted for by the CQ form factor

• long-range HT (b) generates the resonance bumps in the x-space

included and relevant for Q < Lc

not included, but relevant
only for Q < LQCD
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phenomenological inputs of the generalized two-stage model

1) the value of the ratio b / mQ;

2) the shape of the threshold factor.



21

rQ = 0.21 fm• effects of the ratio b / mQ:

the scaling property is not affected by b / mQ, but the scaling function is

b / mQ = 1.2
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• effects of the shape of the threshold factor:

CQ size ~ 0.2 ÷ 0.3 fm 

the scaling property is not affected by the
shape of Fthr(W), but the scaling function is
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• consistency check: reproduction of nucleon elastic data using the same CQ form factor
                                    and the same wave function

• covariant LF approach @ q+ = 0:

- one-body e.m. at the CQ level:
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- nucleon Sachs form factors:
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b = 0.3 GeV
mQ = 0.25 GeV

rQ = 0.21 fm

rQ = 0.33 fm

same b and mQ

just one possibility !
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† 

F2
p x,Q 2( ) = dz
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2
x ⋅ f j

p x( )• generalized two-stage model:

it should be the
same distribution !

consistency !
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Preliminary Results on Polarized Nachtmann Moments (> 70% from CLAS data)

~ SCALING for n > 1 !!!
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SUMMARY

- the scaling property is well satisfied by CLAS data

- the CQ form factor extracted from inelastic proton data is consistent with the one required
   explain elastic nucleon data

- the constituent quark size turns out to be ~ 0.2 ÷ 0.3 fm.

• extension of the two-stage model to low values of Q2 below and around the scale of cSB

- inclusion of the elastic coupling at the CQ level  new scaling property

• results of the analysis of the new CLAS data for Q2 between ~ 0.1 and ~ 2 GeV2:

the inclusive proton structure function at low momentum transfer originates
 mainly from the elastic coupling with extended objects inside the proton
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# the light-front formalisms at q+ = 0 is presently the most suitable approach for developing a
   relativistic CQ model

CONCLUSIONS

# CQ’s as quasi-particles: dressing of valence quarks with gluons and qq pairs

# CQ’s as intermediate structures between current quarks and hadrons

two-stage model: hadrons are composed by a finite number of CQ’s having a structure

# open problems:  1) baryon spin-orbit puzzle;
                              2) d/u puzzle at large x.

# consistency with DIS data and first evidence from CLAS data at low momentum transfer

# running and planned experiments at JLab (including its upgrade to 12 GeV) are expected to
   shed further light on hadron and CQ structures


